
Deterministic Minimum Steiner Cut in Maximum
Flow Time

Matthew Ding1 Jason Li2

1Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

2School of Computer Science
Carnegie Mellon University

European Symposium on Algorithms
September 2024

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 1 / 17



Motivation: Fast Graph Algorithms

Recent breakthroughs for fundamental deterministic graph problems:

(Global) Minimum cut: m1+o(1), “almost-linear” (Li, STOC 2021)

(s − t) Maximum flow: m1+o(1), “almost-linear” (vdBCKLPGSS,
FOCS 2023)

(Global) Minimum cut: m · polylog(n), “near-linear” (HLRW, SODA
2024)

Ultimate goal: near-linear time algorithms!
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Problem Statement

Minimum Steiner Cut Problem

Given undirected, weighted graph G (V ,E ) and a subset of vertices T ⊆ V
(called terminals), find the subset of edges of minimum total weight
disconnecting any pair of vertices in T .

Figure: Minimum Steiner Cut. Terminals in red.

Generalizes two fundamental graph problems:

Global min-cut: T = V

s − t min-cut: T = {s, t}

Deterministic near-linear minimum Steiner cut?
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Previous Work: Minimum Steiner Cut

Folklore: n − 1 s − t min-cuts (calls to any blackbox max-flow algorithm).

Previous Result: Li, Panigrahi (FOCS 2020)

Minimum Steiner cut algorithms using only polylogarithmic maximum flow
calls.

Randomized: logO(1) n maximum flows, Õ(m) overhead

Deterministic: logO(1/ϵ4) n maximum flows, O(m1+ϵ) overhead

Deterministic polylogarithmic maximum flows requires m1+O(1) overhead!
Ideally we would like near-linear max-flow and near-linear overhead.
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Deterministic: logO(1/ϵ4) n maximum flows, O(m1+ϵ) overhead

Deterministic polylogarithmic maximum flows requires m1+O(1) overhead!
Ideally we would like near-linear max-flow and near-linear overhead.

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 4 / 17



Previous Work: Minimum Steiner Cut

Folklore: n − 1 s − t min-cuts (calls to any blackbox max-flow algorithm).

Previous Result: Li, Panigrahi (FOCS 2020)

Minimum Steiner cut algorithms using only polylogarithmic maximum flow
calls.

Randomized: logO(1) n maximum flows, Õ(m) overhead
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Previous Work: Minimum Steiner Cut

Deterministic algorithm: derandomization using expander decomposition

Expander decomposition: separates graph into expander clusters with
low intercluster edge weights between them

Key properties:

1 Minimum Steiner cut intersects small number of clusters

2 Any Steiner cut which intersects clusters cuts them “unbalanced”

Bottleneck! Necessary?
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Our Work: Main Result

Answer: No!

Theorem 1: Faster Deterministic Minimum Steiner Cut

There exists a deterministic minimum Steiner cut algorithm with
polylogarithmic maximum flow calls and near-linear overhead

1 Deterministic near-linear maximum flow algorithm is the only barrier
towards deterministic near-linear minimum Steiner cut.

2 Runtime improvement by forgoing expander decomposition

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 6 / 17



Our Work: Main Result

Answer: No!

Theorem 1: Faster Deterministic Minimum Steiner Cut

There exists a deterministic minimum Steiner cut algorithm with
polylogarithmic maximum flow calls and near-linear overhead

1 Deterministic near-linear maximum flow algorithm is the only barrier
towards deterministic near-linear minimum Steiner cut.

2 Runtime improvement by forgoing expander decomposition

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 6 / 17



Our Work: Main Result

Answer: No!

Theorem 1: Faster Deterministic Minimum Steiner Cut

There exists a deterministic minimum Steiner cut algorithm with
polylogarithmic maximum flow calls and near-linear overhead

1 Deterministic near-linear maximum flow algorithm is the only barrier
towards deterministic near-linear minimum Steiner cut.

2 Runtime improvement by forgoing expander decomposition

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 6 / 17



Our Work: Main Result

Answer: No!

Theorem 1: Faster Deterministic Minimum Steiner Cut

There exists a deterministic minimum Steiner cut algorithm with
polylogarithmic maximum flow calls and near-linear overhead

1 Deterministic near-linear maximum flow algorithm is the only barrier
towards deterministic near-linear minimum Steiner cut.

2 Runtime improvement by forgoing expander decomposition

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 6 / 17



s-strong Partitions

Definition: s-strong cluster (informal)

A cluster C is called s-strong if any cut of size < δ splits the cluster with
at most s volume on one side.

Relaxation of expander decomposition

Used to construct deterministic near-linear time global min-cut
algorithms

1 Unweighted: Kawabarayashi, Thorup (J. ACM 2018)
2 Weighted: HLRW (SODA 2024)
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Our Results: Terminal-Based Partitioning

We want a “terminal-versions” of previous methods!

Definition: s-terminal-strong cluster (informal)

A cluster C is called s-terminal-strong if any cut of size < δ splits the
cluster with at most s terminals on one side.

Definition: ψ-terminal-sparsity

A cut S is called ψ-terminal-sparse if

w(S , S̄)

min(|S ∩ T |, |S̄ ∩ T |)
< ψ (1)
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Our Results: Terminal-Based Partitioning

Theorem 2: Deterministic Terminal-Strong Partition

Algorithm partitioning weighted graph into clusters such that

1 Any cut of size < δ splits all clusters with at most polylog(n)
terminals on one side

2 The total weight of edges between clusters is at most Õ(δ · |T |)
3 For any cluster, any cut of size < δ either does not split the cluster or

splits edges within the cluster with total weight > δ/polylog(n)

Uses log2 n maximum flows and near-linear overhead.

(1) and (2) directly generalize s-strong partitions to terminals

(3) ensures few clusters are split, (1) ensures clusters are split
unbalanced!
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Review: Cut-Matching Game

Khandekar, Rao, Vazirani (J. ACM 2009)

Goal: Find sparse cut or certify none exist

Key idea: Two players, iteratively embed low-congestion expander
into graph G (V ,E )

Begin by instantiating an empty graph H with vertices V , called the
“cut graph”

Figure: Graph G (black) Figure: Cut Graph H (orange)
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Review: Cut-Matching Game

Cut-Matching Game Iteration

1 Cut player finds bipartition of cut graph H containing sparse cut
2 Matching player computes maximum flow between bipartition on

original graph G and embeds the flow as a matching in H
If flow cannot be successfully routed, we get a sparse cut

3 After log2 n rounds, G is guaranteed to be an edge-expander.
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2 Matching player computes maximum flow between bipartition

on original graph G and embeds the flow as a matching in H
If flow cannot be successfully routed, we get a sparse cut
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Review: Cut-Matching Game

Cut-Matching Game Iteration

1 Cut player finds bipartition of cut graph H containing sparse cut
2 Matching player computes maximum flow between bipartition on

original graph G and embeds the flow as a matching in H
If flow cannot be successfully routed, we get a sparse cut

3 After log2 n rounds, G is guaranteed to be an edge-expander.

Figure: Certify Expander!
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Terminal Cut-Matching Game

Goal: Find terminal-sparse cut or certify none exist

Key idea: Embed low-congestion s-strong graph on terminals

Begin by instantiating an empty cut-graph of terminals T , instead of
all vertices

Figure: Graph G (black), terminals (red) Figure: Cut Graph H (orange)

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 12 / 17



Terminal Cut-Matching Game

Goal: Find terminal-sparse cut or certify none exist

Key idea: Embed low-congestion s-strong graph on terminals

Begin by instantiating an empty cut-graph of terminals T , instead of
all vertices

Figure: Graph G (black), terminals (red) Figure: Cut Graph H (orange)

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 12 / 17



Terminal Cut-Matching Game

Goal: Find terminal-sparse cut or certify none exist

Key idea: Embed low-congestion s-strong graph on terminals

Begin by instantiating an empty cut-graph of terminals T , instead of
all vertices

Figure: Graph G (black), terminals (red) Figure: Cut Graph H (orange)

Ding, Matthew (UC Berkeley) Deterministic Minimum Steiner Cut ESA 2024 12 / 17



Terminal Cut-Matching Game

Terminal Cut-Matching Game Iteration

1 Cut player finds bipartition of cut graph H containing sparse cut.
2 Matching player computes maximum flow between terminal partition

on original graph G and embeds flow as matching edges in cut graph.
3 After log n rounds, we certify G as a terminal-strong cluster.
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Terminal Cut-Matching Game Iteration

1 Cut player finds bipartition of cut graph H containing sparse
cut.

2 Matching player computes maximum flow between terminal partition
on original graph G and embeds flow as matching edges in cut graph.

3 After log n rounds, we certify G as a terminal-strong cluster.
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Terminal Cut-Matching Game

Terminal Cut-Matching Game Iteration

1 Cut player finds bipartition of cut graph H containing sparse cut.
2 Matching player computes maximum flow

between terminal partition on original graph G and embeds flow
as matching edges in cut graph.

3 After log n rounds, we certify G as a terminal-strong cluster.

Figure: Matching Player: Flow Figure: Matching Player: Matching
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Terminal Cut-Matching Game

Terminal Cut-Matching Game Iteration

1 Cut player finds bipartition of cut graph H containing sparse cut.
2 Matching player computes maximum flow between terminal partition

on original graph G and embeds flow as matching edges in cut graph.
3 After log n rounds, we certify G as a terminal-strong cluster.

Figure: Certify Cut-Graph s-strong Figure: Certify Graph s-terminal-strong!
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Terminal Cut-Matching Game: No Flow?

What happens when we can’t make a complete flow?

Figure: No Flow?

Original cut-matching game: sparse cut

Terminal cut-matching game: terminal-sparse cut, since terminals are
sources/sinks
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What happens when we can’t make a complete flow?

Figure: No Flow?

Original cut-matching game: sparse cut

Terminal cut-matching game: terminal-sparse cut, since terminals are
sources/sinks
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Terminal Cut-Matching Game: No Flow?

Two cases to consider:

1 Balanced Cut: Recurse on both sides

2 Unbalanced Cut: Larger side is terminal-strong, recurse on smaller
side

Figure: Small flow, balanced cut Figure: Small flow, unbalanced cut
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Conclusion

Main takeaway:

We reduce the problem of finding terminal-sparse cuts in a
graph into finding sparse cuts in the cut-graph

Allows us to deal with terminals for minimum Steiner cut

Future Directions:

1 Near-linear maximum flow algorithm (randomized or deterministic)

2 Terminal-based partitioning algorithm as subroutine?
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Thanks!

Questions?
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