

Space Complexity of Minimum Cut Problems in Single-Pass Streams

Matthew Ding (Berkeley)

16th Innovations in Theoretical Computer Science (ITCS 2025)

Joint work with...

Alexandro Garces (MIT)

Jason Li (CMU)

Honghao Lin (CMU)

Jelani Nelson (Berkeley)

Vihan Shah (Waterloo)

David P. Woodruff (CMU)

Streaming Algorithms

- Data is presented in order one by one over a data stream
 - [Morris 1977] Approximate counting
 - [Flajolet, Martin 1983] Distinct elements
 - [Alon, Matias, Szegedy 1996] Frequency moments
- Logarithmic space with respect to input length

Graph Streaming

- Graph G(V, E), vertex set V is known
- Edge set E is presented in stream

• Even basic problems require $\Omega(n)$ memory (e.g. connectivity)

Graph Semi-Streaming

- Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang (Theoretical Computer Science 2005)
- $O(n \cdot \text{polylog } n)$ space
 - Enough for vertices
 - Not enough for edges

Minimum Cut Streaming

Given a graph stream...

find the global minimum cut in the graph.

Theorem [Zelke 2011]: Computing the exact minimum cut requires $\Omega(n^2)$ space, i.e., storing all edges graph.

Minimum Cut Streaming

How do we deal with this?

- Approximate minimum cut on weighted graphs in adversarial streams
- II. Exact minimum cut on unweighted graphs in random-order streams

We show optimal results in both regimes!

I. Approximate Minimum Cut in Adversarial Streams

Cut Sparsification

Definition (Cut Sparsifier): H(V, E') is a $(1 + \epsilon)$ cut sparsifier of G(V, E) if given a cut S:

$$(1 - \epsilon)w_G(S, V \setminus S) \le w_H(S, V \setminus S) \le (1 + \epsilon)w_G(S, V \setminus S)$$

holds for all $\emptyset \subseteq S \subseteq V$ with probability > 2/3.

Reweighted subgraph which approximately preserves <u>all cuts</u>

Theorem [Benczur-Karger 2000]: Randomized algorithm for $(1+\epsilon)$ cut sparsifiers with $O\left(\frac{n\log n}{\epsilon^2}\right)$ edges

Spectral Sparsification

Definition (Spectral Sparsifier): H(V, E') is a $(1 + \epsilon)$ spectral sparsifier of G(V, E) if given a vector x:

$$(1 - \epsilon)x^{\mathsf{T}} L_G x \le x^{\mathsf{T}} L_H x \le (1 + \epsilon)x^{\mathsf{T}} L_G x$$

holds for all $x \in \mathbb{R}^n$ with probability > 2/3.

- Reweighted subgraph whose Laplacian approximately preserves <u>all quadratic forms</u>
- $w_G(S, V \setminus S) = x_S^{\mathsf{T}} L_G x_S$, where $x_S \in \{0,1\}^n$ is the binary indicator vector of set S

Theorem [Batson, Spielman, Srivastava 2008]: Deterministic algorithm for $(1+\epsilon)$ spectral sparsifiers with $O\left(\frac{n}{\epsilon^2}\right)$ edges

Minimum Cut Streaming

- Merge-and-reduce framework:
 - Merge: Union of two $(1+\epsilon)$ sparsifiers is a $(1+\epsilon)$ sparsifier
 - Reduce: $(1 + \epsilon)$ sparsifier of a $(1 + \epsilon)$ sparsifier is a $(1 + \epsilon)^2$ sparsifier

• $(1+\epsilon)$ -approximate minimum cut (weighted graph, insertion-only stream) with $\tilde{O}(n/\epsilon^2)$ space

- 1. Space Complexity
 - $\tilde{O}(n/\epsilon^2)$ space using merge-and-reduce and Benczur-Karger/Batson-Spielman-Srivastava sparsifiers

- 2. Running/Update Time
 - $\tilde{O}(m)$ to construct sparsifiers
- 3. Post-processing/Query Time
 - $\tilde{O}(n/\epsilon^2)$ to find minimum cut on sparsifier

- 1. Space Complexity
 - $\widetilde{O}(n/\epsilon^2)$ space using merge-and-reduce and Benczur-Karger/Batson-Spielman-Srivastava sparsifiers

- 2. Running/Update Time
 - $\tilde{O}(m)$ to construct sparsifiers
- 3. Post-processing/Query Time
 - $\tilde{O}(n/\epsilon^2)$ to find minimum cut on sparsifier

Improving Space Complexity

- 1. Space Complexity
 - $\tilde{O}(n/\epsilon^2)$ space using merge-and-reduce and sparsifier
 - Any cut sparsifier data structure requires $\Omega(n/\epsilon^2)$ space [Andoni, Chen, Krauthgamer, Qin, Woodruff, Zhang 2015]
 - Introduced "for-each" sparsification

Definition (For-Each Cut Sparsifier): H(V, E') is a $(1 + \epsilon)$ foreach cut sparsifier of G(V, E) if given a cut S:

$$(1 - \epsilon)w_G(S, V \setminus S) \le w_H(S, V \setminus S) \le (1 + \epsilon)w_G(S, V \setminus S)$$

holds for each $\emptyset \subseteq S \subseteq V$ with probability > 2/3.

Improving Space Complexity

- For-each spectral sparsifiers
 - Constructed with $\tilde{O}(n/\epsilon)$ edges and space, breaking forall lower-bound of $\Omega(n/\epsilon^2)$
 - Earlier constructions were not graphs, needed to store degrees of vertices
 - Chu, Gao, Peng, Sachdeva, Sawlani, Wang (FOCS 2018): used short-cycle decomposition to preserve degrees
- How do you find the minimum cut?
 - Only polynomial candidate cuts to query (Karger)!

- 1. Space Complexity
 - $\tilde{O}(n/\epsilon^2)$ space using merge-and-reduce and Benczur-Karger/Batson-Spielman-Srivastava sparsifiers
- 2. Running/Update Time
 - $\tilde{O}(m)$ to construct sparsifiers
- 3. Post-processing/Query Time
 - $\tilde{O}(n/\epsilon^2)$ to find minimum cut on sparsifier

- 1. Space Complexity (better!)
 - $\widetilde{O}(n/\epsilon)$ space using merge-and-reduce and for-each spectral sparsifier [CGPSSW18]

- 2. Running/Update Time
 - $\tilde{O}(mn)$ time to run basic short-cycle decomposition
- 3. Post-processing/Query Time
 - $\tilde{O}(n^3)$ to query all candidate cuts

- 1. Space Complexity (better!)
 - $\tilde{O}(n/\epsilon)$ space using merge-and-reduce and for-each spectral sparsifier [CGPSSW18]
- 2. Running/Update Time (worse!)
 - $\widetilde{O}(mn)$ time to run basic short-cycle decomposition
- 3. Post-processing/Query Time (worse!)
 - $\widetilde{O}(n^3)$ to query all candidate cuts

Improving Update Time

- 2. Running/Update Time
 - $\tilde{O}(mn)$ time to run basic short-cycle decomposition
 - Parter and Yogev (ICALP 2019) give the most recent short-cycle decomposition result
 - Spectral sparsifier with optimal $\tilde{O}(n/\epsilon)$ edges
 - $m^{1+o(1)}$ total running time
 - $m^{1+o(1)}$ total working memory

Improving Update Time

- 2. Running/Update Time
 - $\tilde{O}(mn)$ time to run basic short-cycle decomposition
 - Parter and Yogev (ICALP 2019) give the most recent short-cycle decomposition result
 - Spectral sparsifier with optimal $\tilde{O}(n/\epsilon)$ edges
 - $m^{1+o(1)}$ total running time
 - $m^{1+o(1)}$ total working memory
 - We make a slight modification for only $\tilde{O}(m)$ working memory

Improving Update Time

- 2. Running/Update Time
 - $m^{1+o(1)}$ time to run short-cycle decomposition
 - Can we do even better?
 - Yes, Online Row Sampling!

Theorem [Cohen, Musco, Pachocki 2016]: Given a graph G over a stream of edges, there exists an online algorithm that constructs a $(1 + \epsilon)$ (for-all) spectral sparsifier with $O(n \log^2 n / \epsilon^2)$ edges, $O(n \log^2 n)$ bits of working memory, and $\tilde{O}(m)$ total runtime

• We can turn $m \to \tilde{O}(n/\epsilon^2)$ edges while preserving cuts by a $(1+\epsilon)$ factor

- 1. Space Complexity
 - $\tilde{O}(n/\epsilon)$ space using merge-and-reduce and for-each spectral sparsifier [CGPSSW18]
- 2. Running/Update Time
 - $\tilde{O}(mn)$ time to run basic short-cycle decomposition
- 3. Post-processing/Query Time
 - $\tilde{O}(n^3)$ to query all candidate cuts

- 1. Space Complexity
 - $\widetilde{O}(n/\epsilon)$ space using merge-and-reduce and for-each spectral sparsifier instead of $(n/\epsilon)^{1+o(1)}$ from [PY19]

- 2. Running/Update Time (better!)
 - $\widetilde{O}(m)+(n/\epsilon^2)^{1+o(1)}$ total time to run [PY19] short-cycle decomposition with online row sampling
 - If $m > (n/\epsilon^2)^{1+o(1)}$, we get an amortized update time per edge of $\tilde{\mathbf{O}}(\mathbf{1})$ instead of $n^{o(1)}$ from [PY19]

Approximate Minimum Cut Summary

Theorem [This work]: An algorithm calculating $(1 + \epsilon)$ -approximate minimum cut on weighted graphs in insertion-only streams with

- 1. $\tilde{O}(n/\epsilon)$ space
- 2. $\tilde{O}(m) + (n/\epsilon^2)^{1+o(1)}$ total running time
- 3. $\tilde{O}(n^2/\epsilon^2)$ total post-processing time*
- For-each spectral sparsifier + approximate minimum cut enumeration
- Improved cycle decomposition + online row sampling

Approximate Minimum Cut Lower Bounds

Can we do better?

Theorem [This work]: $(1 + \epsilon)$ -approximate minimum cut algorithms on simple, unweighted graph streams require:

- Randomized: $\Omega(n/\epsilon)$ space
- Deterministic: $\Omega(n/\epsilon^2)$ space (when $\epsilon \ge 1/n^{1/4}$)
- Algorithm optimal in space complexity (up to polylogarithmic factors)

II. Exact Minimum Cut in Random-Order Streams

Random-Order Model

 Graph is adversarially chosen, a random permutation of the edge set is presented in the stream

- Provable separations:
 - Quantiles: Guha, McGregor (SIAM J. Comput. 2009)
 - Maximum Matching: Bernstein (ICALP 2020)

Random-Order Minimum Cut

• Can random ordering help beat the $\Omega(n^2)$ lower bound for exact minimum cut algorithms?

Theorem [This work]: There exists an algorithm which computes the exact minimum cut of a simple, unweighted graph in a random-order stream using $\tilde{O}(n)$ space and $\tilde{O}(n)$ update time per edge.

- Optimal space (up to polylog)!
 - Chakrabarti, Cormode, McGregor (STOC 2008) showed $\Omega(n)$ space graph connectivity lower bound in random-order streams

- Key idea: use an initial "prefix" of the edges to get initial information on the graph
- 1. Initialize a $\epsilon = 1/\log^2 n$ for-all sparsifier H_1 , begin inserting edges
 - If minimum cut size $s = O(\log n)$, for-all sparsifier finds exact minimum cut

- 2. Minimum cut size $s = \Omega(\log n)$
 - Assume we know a constant approximation of s (guess powers of 2)
 - **Prefix subgraph** of first $|G| \log n / s$ edges constant approximates minimum cut with high probability
 - True minimum cut is a 1.1-approximate minimum cut of prefix graph

Prefix:
$$\epsilon = 1/\log^2 n$$

$$s = O(\log n)$$

- 2. Minimum cut size $s = \Omega(\log n)$
 - Assume we know a constant approximation of s (guess powers of 2)
 - **Prefix subgraph** of first $|G| \log n / s$ edges constant approximates minimum cut with high probability
 - We store $\epsilon = 1/\log^2 n$ sparsifier of **prefix subgraph** to find all candidates: <u>1.1-approximate minimum cuts</u>

- 2. Minimum cut size $s = \Omega(\log n)$
 - Remainder of stream: store edges in new graph T only if it is within a <u>non-singleton 1.1-approximate minimum</u> <u>cut</u>
 - Only O(n) edges total, Rubinstein, Schramm, Weinberg (ITCS 2018)
 - Store degrees of vertices (singleton cuts)

- 3. After stream: query all non-singleton approximate minimum cuts
 - Sparsifier H_1 gives exact information of prefix
 - Graph T gives exact information on remainder

III. Improving Update and Post-Processing Times

- $\tilde{O}(n^3)$ time to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and O(n) time to calculate each cut
- $w_G(S, V \setminus S) = x_S^{\mathsf{T}} L_G x_S = x_S^{\mathsf{T}} B^{\mathsf{T}} B x_S = ||Bx_S||_2^2$
 - $B \in \mathbb{R}^{\binom{n}{2} \times n}$ is vertex-edge incidence matrix
 - Row for edge e = (u, v) has 1 in column u, −1 in column v, zeroes elsewhere

- $\tilde{O}(n^3)$ time to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and O(n) time to calculate each cut

		1	2	3	4
$ ilde{O}(n/\epsilon)$ edges	e_1	1	-1	0	0
	e_2	1	0	-1	0
	e_3	1	0	0	-1
	e_4	0	0	1	-1

- $\tilde{O}(n^3)$ time to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and O(n) time to calculate each cut

		1,3	2	4
$ ilde{O}(n/\epsilon)$ edges	e_1	1	-1	0
	e_2	0	0	0
	e_3	1	0	-1
	e_4	1	0	-1

- $\tilde{O}(n^3)$ time to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and O(n) time to calculate each cut

		1,3,4	2
$ ilde{O}(n/\epsilon)$ edges	e_1	1	-1
	e_2	0	0
	e_3	0	0
	e_4	0	0

$$||Bx_{\{2\}}||_2^2 = ||Bx_{\{1,3,4\}}||_2^2 = 1$$

37

- $\tilde{O}(n^3)$ time to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and O(n) time to calculate each cut
- Only need $(1 + \epsilon)$ approximation...
- Apply Johnson-Lindenstrauss to vertex-edge incidence matrix!

- $\widetilde{O}(n^2/\epsilon^2)$ to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and $O(\log n/\epsilon^2)$ time to calculate each cut

- $\widetilde{O}(n^2/\epsilon^2)$ to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and $O(\log n/\epsilon^2)$ time to calculate each cut

- $\widetilde{O}(n^2/\epsilon^2)$ to query all candidate cuts in sparsifier using Karger-Stein recursive contraction
 - $\tilde{O}(n^2)$ cuts and $O(\log n/\epsilon^2)$ time to calculate each cut

		1,3,4	2
_	e_1	1	-1
X	e_2	0	0
$\log n \ / \epsilon^2$ rows	e_3	0	0
	e_4	0	0

Running Time for Exact Minimum Cut

- Runtime Bottlenecks:
 - 1. Update Time: store edge only if it is within a candidate minimum cut
 - Post-processing Time: query all candidate minimum cuts with a for-all sparsifier
- Both searches can be improved using a k-sparse recovery sketch with $k = \theta(\log n)!$
- Key idea: applying sketching to Karger-Stein recursive contraction

Summary of Results

- Optimal space approximate minimum cut on weighted graphs in adversarial streams
- II. Optimal space exact minimum cut on unweighted graphs in random-order streams
- III. General algorithmic framework improving enumerating cuts using sketches

IV. (Optimal space approximate all-pairs effective resistances in adversarial streams)

Open Problems

Exact random-order minimum cut on weighted graphs

- Approximate minimum cut in fully-dynamic graph streams (insertions and deletions):
 - Upper-bound: dynamic spectral sparsifiers $\widetilde{O}\left(\frac{n}{\epsilon^2}\right)$ space

• Lower Bound: insertion-only minimum cut $\Omega\left(\frac{n}{\epsilon}\right)$ space

Thank you!

• Full version: arXiv:2412.01143 [cs.DS]

Joint work with:

Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson, Vihan Shah, David P. Woodruff

 Currently applying for Ph.D. programs this cycle, happy to chat!