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Streaming Algorithms

* Data is presented in order one by one over a data
stream
* [Morris 1977] Approximate counting
* [Flajolet, Martin 1983] Distinct elements
e [Alon, Matias, Szegedy 1996] Frequency moments

* Logarithmic space with respect to input length



Graph Streaming

* Graph G(V,E), vertex set V is known

* Edge set E is presented in stream
1,2)
5)

LR RS

* Even basic problems require 2(n) memory (e.g.
connectivity)



Graph Semi-Streaming

* Introduced by Feigenbaum, Kannan, McGregor,
Suri, Zhang (Theoretical Computer Science 2005)

* O(n - polylogn) space
* Enough for vertices
* Not enough for edges



Minimum Cut
Streaming

e Given a graph stream...

find the global minimum cut in the graph.
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Minimum Cut
Streaming

e How do we deal with this?

l.  Approximate minimum cut on weighted graphs
in adversarial streams

Il. Exact minimum cut on unweighted graphs in
random-order streams

* We show optimal results in both regimes!



l. Approximate Minimum Cut
In Adversarial Streams
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Cut Sparsification

Definition (Cut Sparsifier): H(V,E") is a (1 + €) cut sparsifier
of G(V,E) if givenacutS:

(1—wg(S,V\S) S wy(S,V\S) < (1+wg(S,V\S5)
holds forall ® € S € V with probability > 2/3.

* Reweighted subgraph which approximately
preserves all cuts
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Spectral Sparsification

Definition (Spectral Sparsifier): H(V,E") is a (1 + €) spectral

sparsifier of G(V, E) if given a vector x:
(1l—e)x"Lex<x"Lyx<(1+4+e)x"Lsx

holds for all x € R™ with probability > 2/3.

* Reweighted subgraph whose Laplacian approximately
preserves all quadratic forms

* we(S,V\S) = xd Lsxs, where x5 € {0,1}" is the
binary indicator vector of set S
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Minimum Cut
Streaming

* Merge-and-reduce framework:
* Merge: Union of two (1 + €) sparsifiersisa (1 + €)
sparsifier
* Reduce: (1 + €) sparsifier of a (1 + €) sparsifier is a
(1 + €)? sparsifier

aOB00

* (1 + €)-approximate minimum cut (weighted graph,
insertion-only stream) with O(n/e?) space

10 ITCS 2025. Matthew Ding (Berkeley) 1/10/25



Algorithm Metrics

1. Space Complexity

» 0(n/€?) space using merge-and-reduce and Benczur-
Karger/Batson-Spielman-Srivastava sparsifiers

2. Running/Update Time
* 0(m) to construct sparsifiers

3. Post-processing/Query Time
* 0(n/€?) to find minimum cut on sparsifier



Algorithm Metrics

1. Space Complexity

» 0(n/€?*) space using merge-and-reduce and Benczur-
Karger/Batson-Spielman-Srivastava sparsifiers

2. Running/Update Time
* 0(m) to construct sparsifiers

3. Post-processing/Query Time
* 0(n/€?) to find minimum cut on sparsifier



Improving
Space Complexity

1. Space Complexity
* 0(n/€?) space using merge-and-reduce and sparsifier
e Any cut sparsifier data structure requires Q(n/e?) space

[Andoni, Chen, Krauthgamer, Qin, Woodruff, Zhang
2015]

* Introduced “for-each” sparsification

Definition (For-Each Cut Sparsifier): H(V,E") isa (1 + €) for-
each cut sparsifier of G(V, E) if given a cut S:

(1=ewe(S,V\S) <wy(S,V\S) < (1 +ewe(S,V\S)
holds foreach @ € S € V with probability > 2/3.




Improving Space
Complexity

* For-each spectral sparsifiers

e Constructed with 5(71/6) edges and space, breaking for-
all lower-bound of Q(n/e?)

 Earlier constructions were not graphs, needed to store
degrees of vertices

e Chu, Gao, Peng, Sachdeva, Sawlani, Wang (FOCS 2018):
used short-cycle decomposition to preserve degrees

* How do you find the minimum cut?
* Only polynomial candidate cuts to query (Karger)!



Algorithm Metrics

1. Space Complexity

» 0(n/€?) space using merge-and-reduce and Benczur-
Karger/Batson-Spielman-Srivastava sparsifiers

2. Running/Update Time
* 0(m) to construct sparsifiers

3. Post-processing/Query Time
* 0(n/€?) to find minimum cut on sparsifier



Algorithm Metrics

1. Space Complexity (better!)

. 5(11/6) space using merge-and-reduce and for-each
spectral sparsifier [CGPSSW18]

2. Running/Update Time
* 0(mn) time to run basic short-cycle decomposition

3. Post-processing/Query Time
* 0(n?) to query all candidate cuts



Algorithm Metrics

1. Space Complexity (better!)

. 5(71/6) space using merge-and-reduce and for-each
spectral sparsifier [CGPSSW 18]

2. Running/Update Time (worse!)
* 0(mn) time to run basic short-cycle decomposition

3. Post-processing/Query Time (worse!)
* 0(n3) to query all candidate cuts



Improving Update Time

2. Running/Update Time

* 0(mn) time to run basic short-cycle decomposition

* Parter and Yogev (ICALP 2019) give the most recent
short-cycle decomposition result
* Spectral sparsifier with optimal O(n/¢€) edges
« m1t°(D) total running time
« m1*t°() total working memory



Improving Update Time

2. Running/Update Time

* 0(mn) time to run basic short-cycle decomposition

* Parter and Yogev (ICALP 2019) give the most recent
short-cycle decomposition result
* Spectral sparsifier with optimal O(n/¢€) edges
« m1t°(D) total running time

. ml+o(1) tetal ‘“8IF|E'IIHg REMEEY

* We make a slight modification for only 0 (m) working
memory



Improving Update Time

2. Running/Update Time

e m1*°( time to run short-cycle decomposition
e Can we do even better?
* Yes, Online Row Sampling!

* We can turnm — é(n/ez) edges while preserving cuts
by a (1 + €) factor
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Algorithm Metrics

1. Space Complexity

* 0(n/€) space using merge-and-reduce and for-each
spectral sparsifier [CGPSSW 18]

2. Running/Update Time

* 0(mn) time to run basic short-cycle decomposition

3. Post-processing/Query Time
* 0(n?) to query all candidate cuts



Algorithm Metrics

1. Space Complexity

 0(n/€) space using merge-and-reduce and for-each
spectral sparsifier instead of (12/€)1*°(D) from [PY19]

2. Running/Update Time (better!)

* O(m) + (n/€*)17°() total time to run [PY19] short-
cycle decomposition with online row sampling

* Ifm > (n/e*)'*°(), we get an amortized update time
per edge of O(1) instead of n°M from [PY19]



Approximate Minimum
Cut Summary

1. For-each spectral sparsifier + approximate
minimum cut enumeration

2. Improved cycle decomposition + online row
sampling
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Approximate Minimum
Cut Lower Bounds

e Can we do better?

 Algorithm optimal in space complexity (up to
polylogarithmic factors)
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ll. Exact Minimum Cut In
Random-Order Streams
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Random-Order Model

e Graph is adversarially chosen, a random
permutation of the edge set is presented in the
stream

* Provable separations:

e Quantiles: Guha, McGregor (SIAM J. Comput. 2009)
 Maximum Matching: Bernstein (ICALP 2020)



Random-Order
Minimum Cut

e Can random ordering help beat the Q(n?) lower
bound for exact minimum cut algorithms?

Theorem [This work]: There exists an algorithm which
computes the exact minimum cut of a simple, unweighted
graph in a random-order stream using O (n) space and 0(n)
update time per edge.

* Optimal space (up to polylog)!

e Chakrabarti, Cormode, McGregor (STOC 2008) showed
(0(n) space graph connectivity lower bound in random-
order streams




Algorithm Detalls

* Key idea: use an initial “prefix” of the edges to get
initial information on the graph

1. Initialize a € = 1/log? n for-all sparsifier H;,
begin inserting edges

* If minimum cut size s = 0(logn), for-all sparsifier finds
exact minimum cut

Prefix: € = 1/log?n

s = 0(logn)
w ‘ Exact Minimum Cut




Algorithm Detalls

2. Minimum cut size s = ((logn)

* Assume we know a constant approximation of s (guess
powers of 2)

* Prefix subgraph of first |G| logn /s edges constant
approximates minimum cut with high probability

* True minimum cut is a 1.1-approximate minimum cut of
prefix graph

Prefix: € = 1/log?n

w s = 0(logn)




Algorithm Detalls

2. Minimum cut size s = ((logn)

* Assume we know a constant approximation of s (guess
powers of 2)

* Prefix subgraph of first |G| logn /s edges constant
approximates minimum cut with high probability

 We store € = 1/log? n sparsifier of prefix subgraph to
find all candidates: 1.1-approximate minimum cuts

Prefix: € = 1/log?n

s = 0(logn) 1.1-approximate
‘ minimum cuts




Algorithm Detalls

2. Minimum cut size s = ((logn)
 Remainder of stream: store edges in new graph T only if
it is within a non-singleton 1.1-approximate minimum

cut
* Only O(n) edges total, Rubinstein, Schramm, Weinberg (ITCS
2018)

 Store degrees of vertices (singleton cuts)

Prefix: € = 1/log?n Size = 0(n) Edges within non-singleton 1.1-
approximate minimum cuts

@ 0-




Algorithm Detalls

3. After stream: query all non-singleton
approximate minimum cuts

* Sparsifier H; gives exact information of prefix
 Graph T gives exact information on remainder

Enumerate all non-singleton
: .. ‘ Exact Minimum Cut
1.1-approximate minimum cuts

/ \ |

Prefix: e = 1/log?n  Size = 0(n) Degrees

O O




I1l. Improving Update and
Post-Processing Times
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Running Time for
Approx Minimum Cut

 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

* we(S,V\S) = x5 Lgxs = x5 B' Bxs = ||Bx||5
. B € R(G)*n s vertex-edge incidence matrix

* Row for edge e =(u, v) has 1 in column u, -1 in column v,
zeroes elsewhere



Running Time for
Approx Minimum Cut

* 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

€1
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Running Time for
Approx Minimum Cut

* 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

III
31

-1 0
O 0 O
1 0 -1

1 0 -1
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Running Time for
Approx Minimum Cut

* 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

1Bx3 |5 =1Bxg1 343115 = 1
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Running Time for
Approx Minimum Cut

 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

* Only need (1 + €) approximation...

* Apply Johnson-Lindenstrauss to vertex-edge
incidence matrix!



Running Time for
Approx Minimum Cut

* 0(n?/€%) to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction
* 0(n?) cuts and O(log n/€?) time to calculate each cut

el —1 0

TX.1 0 -1 0

2y 1 0 0 -1
O 0 1 -1 €4

logn /€>
rows

ﬂ.
N
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Running Time for
Approx Minimum Cut

* 0(n?/€%) to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction
* 0(n?) cuts and O(log n/€?) time to calculate each cut

lﬂ-

61 -1 0
T XEo oo
1 0 -1

logn /€>

rows 1 0 -1
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Running Time for
Approx Minimum Cut

* 0(n?/€%) to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction
* 0(n?) cuts and O(log n/€?) time to calculate each cut

lﬂ
T xm

0 0
2 0 0

logn /e
rows 0 0
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Running Time for
Exact Minimum Cut

e Runtime Bottlenecks:

1. Update Time: store edge only if it is within a candidate
minimum cut

2. Post-processing Time: query all candidate minimum
cuts with a for-all sparsifier

* Both searches can be improved using a k-sparse
recovery sketch with k = 6(logn)!

* Key idea: applying sketching to Karger-Stein
recursive contraction



Summary of Results

l.  Optimal space approximate minimum cut on
weighted graphs in adversarial streams

II. Optimal space exact minimum cut on unweighted
graphs in random-order streams

Ill. General algorithmic framework improving
enumerating cuts using sketches

IV. (Optimal space approximate all-pairs effective
resistances in adversarial streams)



Open Problems

e Exact random-order minimum cut on weighted
graphs

e Approximate minimum cut in fully-dynamic graph
streams (insertions and deletions):
e Upper-bound: dynamic spectral sparsifiers O (E—nz) space

GAP

* Lower Bound: insertion-only minimum cut () (2) space



Thank you!

* Full version: arXiv:2412.01143 [cs.DS]

e Joint work with:

Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson,
Vihan Shah, David P. Woodruff

e Currently applying for Ph.D. programs this cycle,
happy to chat!
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