:-o‘ e -u.ur,_.‘:;';.__b..
e)
B B

=5
\ ﬂ, < ..i
N 1868 4

UNIVERSITY OF CALIFORNIA

Space Complexity of Minimum Cut
Problems in Single-Pass Streams

Matthew Ding (Berkeley)

16th Innovations in Theoretical Computer Science (ITCS 2025)

Joint work with...
David P.

Alexandro Honghao Jelani Nelson Vihan Shah Woodruff
Garces (MIT) Jason Li (CMU) Lin (CMU) (Berkeley) (Waterloo) (CMU)

Streaming Algorithms

* Data is presented in order one by one over a data
stream
* [Morris 1977] Approximate counting
* [Flajolet, Martin 1983] Distinct elements
e [Alon, Matias, Szegedy 1996] Frequency moments

* Logarithmic space with respect to input length

Graph Streaming

* Graph G(V,E), vertex set V is known

* Edge set E is presented in stream
1,2)
5)

LR RS

* Even basic problems require 2(n) memory (e.g.
connectivity)

Graph Semi-Streaming

* Introduced by Feigenbaum, Kannan, McGregor,
Suri, Zhang (Theoretical Computer Science 2005)

* O(n - polylogn) space
* Enough for vertices
* Not enough for edges

Minimum Cut
Streaming

e Given a graph stream...

find the global minimum cut in the graph.

5 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Minimum Cut
Streaming

e How do we deal with this?

l. Approximate minimum cut on weighted graphs
in adversarial streams

Il. Exact minimum cut on unweighted graphs in
random-order streams

* We show optimal results in both regimes!

l. Approximate Minimum Cut
In Adversarial Streams

ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Cut Sparsification

Definition (Cut Sparsifier): H(V,E") is a (1 + €) cut sparsifier
of G(V,E) if givenacutS:

(1—wg(S,V\S) S wy(S,V\S) < (1+wg(S,V\S5)
holds forall ® € S € V with probability > 2/3.

* Reweighted subgraph which approximately
preserves all cuts

8 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Spectral Sparsification

Definition (Spectral Sparsifier): H(V,E") is a (1 + €) spectral

sparsifier of G(V, E) if given a vector x:
(1l—e)x"Lex<x"Lyx<(1+4+e)x"Lsx

holds for all x € R™ with probability > 2/3.

* Reweighted subgraph whose Laplacian approximately
preserves all quadratic forms

* we(S,V\S) = xd Lsxs, where x5 € {0,1}" is the
binary indicator vector of set S

9 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Minimum Cut
Streaming

* Merge-and-reduce framework:
* Merge: Union of two (1 + €) sparsifiersisa (1 + €)
sparsifier
* Reduce: (1 + €) sparsifier of a (1 + €) sparsifier is a
(1 + €)? sparsifier

aOB00

* (1 + €)-approximate minimum cut (weighted graph,
insertion-only stream) with O(n/e?) space

10 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Algorithm Metrics

1. Space Complexity

» 0(n/€?) space using merge-and-reduce and Benczur-
Karger/Batson-Spielman-Srivastava sparsifiers

2. Running/Update Time
* 0(m) to construct sparsifiers

3. Post-processing/Query Time
* 0(n/€?) to find minimum cut on sparsifier

Algorithm Metrics

1. Space Complexity

» 0(n/€?*) space using merge-and-reduce and Benczur-
Karger/Batson-Spielman-Srivastava sparsifiers

2. Running/Update Time
* 0(m) to construct sparsifiers

3. Post-processing/Query Time
* 0(n/€?) to find minimum cut on sparsifier

Improving
Space Complexity

1. Space Complexity
* 0(n/€?) space using merge-and-reduce and sparsifier
e Any cut sparsifier data structure requires Q(n/e?) space

[Andoni, Chen, Krauthgamer, Qin, Woodruff, Zhang
2015]

* Introduced “for-each” sparsification

Definition (For-Each Cut Sparsifier): H(V,E") isa (1 + €) for-
each cut sparsifier of G(V, E) if given a cut S:

(1=ewe(S,V\S) <wy(S,V\S) < (1 +ewe(S,V\S)
holds foreach @ € S € V with probability > 2/3.

Improving Space
Complexity

* For-each spectral sparsifiers

e Constructed with 5(71/6) edges and space, breaking for-
all lower-bound of Q(n/e?)

 Earlier constructions were not graphs, needed to store
degrees of vertices

e Chu, Gao, Peng, Sachdeva, Sawlani, Wang (FOCS 2018):
used short-cycle decomposition to preserve degrees

* How do you find the minimum cut?
* Only polynomial candidate cuts to query (Karger)!

Algorithm Metrics

1. Space Complexity

» 0(n/€?) space using merge-and-reduce and Benczur-
Karger/Batson-Spielman-Srivastava sparsifiers

2. Running/Update Time
* 0(m) to construct sparsifiers

3. Post-processing/Query Time
* 0(n/€?) to find minimum cut on sparsifier

Algorithm Metrics

1. Space Complexity (better!)

. 5(11/6) space using merge-and-reduce and for-each
spectral sparsifier [CGPSSW18]

2. Running/Update Time
* 0(mn) time to run basic short-cycle decomposition

3. Post-processing/Query Time
* 0(n?) to query all candidate cuts

Algorithm Metrics

1. Space Complexity (better!)

. 5(71/6) space using merge-and-reduce and for-each
spectral sparsifier [CGPSSW 18]

2. Running/Update Time (worse!)
* 0(mn) time to run basic short-cycle decomposition

3. Post-processing/Query Time (worse!)
* 0(n3) to query all candidate cuts

Improving Update Time

2. Running/Update Time

* 0(mn) time to run basic short-cycle decomposition

* Parter and Yogev (ICALP 2019) give the most recent
short-cycle decomposition result
* Spectral sparsifier with optimal O(n/¢€) edges
« m1t°(D) total running time
« m1*t°() total working memory

Improving Update Time

2. Running/Update Time

* 0(mn) time to run basic short-cycle decomposition

* Parter and Yogev (ICALP 2019) give the most recent
short-cycle decomposition result
* Spectral sparsifier with optimal O(n/¢€) edges
« m1t°(D) total running time

. ml+o(1) tetal ‘“8IF|E'IIHg REMEEY

* We make a slight modification for only 0 (m) working
memory

Improving Update Time

2. Running/Update Time

e m1*°(time to run short-cycle decomposition
e Can we do even better?
* Yes, Online Row Sampling!

* We can turnm — é(n/ez) edges while preserving cuts
by a (1 + €) factor

20 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Algorithm Metrics

1. Space Complexity

* 0(n/€) space using merge-and-reduce and for-each
spectral sparsifier [CGPSSW 18]

2. Running/Update Time

* 0(mn) time to run basic short-cycle decomposition

3. Post-processing/Query Time
* 0(n?) to query all candidate cuts

Algorithm Metrics

1. Space Complexity

 0(n/€) space using merge-and-reduce and for-each
spectral sparsifier instead of (12/€)1*°(D) from [PY19]

2. Running/Update Time (better!)

* O(m) + (n/€*)17°() total time to run [PY19] short-
cycle decomposition with online row sampling

* Ifm > (n/e*)'*°(), we get an amortized update time
per edge of O(1) instead of n°M from [PY19]

Approximate Minimum
Cut Summary

1. For-each spectral sparsifier + approximate
minimum cut enumeration

2. Improved cycle decomposition + online row
sampling

23 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Approximate Minimum
Cut Lower Bounds

e Can we do better?

 Algorithm optimal in space complexity (up to
polylogarithmic factors)

24 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

ll. Exact Minimum Cut In
Random-Order Streams

25 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Random-Order Model

e Graph is adversarially chosen, a random
permutation of the edge set is presented in the
stream

* Provable separations:

e Quantiles: Guha, McGregor (SIAM J. Comput. 2009)
 Maximum Matching: Bernstein (ICALP 2020)

Random-Order
Minimum Cut

e Can random ordering help beat the Q(n?) lower
bound for exact minimum cut algorithms?

Theorem [This work]: There exists an algorithm which
computes the exact minimum cut of a simple, unweighted
graph in a random-order stream using O (n) space and 0(n)
update time per edge.

* Optimal space (up to polylog)!

e Chakrabarti, Cormode, McGregor (STOC 2008) showed
(0(n) space graph connectivity lower bound in random-
order streams

Algorithm Detalls

* Key idea: use an initial “prefix” of the edges to get
initial information on the graph

1. Initialize a € = 1/log? n for-all sparsifier H;,
begin inserting edges

* If minimum cut size s = 0(logn), for-all sparsifier finds
exact minimum cut

Prefix: € = 1/log?n

s = 0(logn)
w ‘ Exact Minimum Cut

Algorithm Detalls

2. Minimum cut size s = ((logn)

* Assume we know a constant approximation of s (guess
powers of 2)

* Prefix subgraph of first |G| logn /s edges constant
approximates minimum cut with high probability

* True minimum cut is a 1.1-approximate minimum cut of
prefix graph

Prefix: € = 1/log?n

w s = 0(logn)

Algorithm Detalls

2. Minimum cut size s = ((logn)

* Assume we know a constant approximation of s (guess
powers of 2)

* Prefix subgraph of first |G| logn /s edges constant
approximates minimum cut with high probability

 We store € = 1/log? n sparsifier of prefix subgraph to
find all candidates: 1.1-approximate minimum cuts

Prefix: € = 1/log?n

s = 0(logn) 1.1-approximate
‘ minimum cuts

Algorithm Detalls

2. Minimum cut size s = ((logn)
 Remainder of stream: store edges in new graph T only if
it is within a non-singleton 1.1-approximate minimum

cut
* Only O(n) edges total, Rubinstein, Schramm, Weinberg (ITCS
2018)

 Store degrees of vertices (singleton cuts)

Prefix: € = 1/log?n Size = 0(n) Edges within non-singleton 1.1-
approximate minimum cuts

@ 0-

Algorithm Detalls

3. After stream: query all non-singleton
approximate minimum cuts

* Sparsifier H; gives exact information of prefix
 Graph T gives exact information on remainder

Enumerate all non-singleton
: .. ‘ Exact Minimum Cut
1.1-approximate minimum cuts

/ \ |

Prefix: e = 1/log?n Size = 0(n) Degrees

O O

I1l. Improving Update and
Post-Processing Times

33 ITCS 2025. Matthew Ding (Berkeley)

1/1

0/25

Running Time for
Approx Minimum Cut

 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

* we(S,V\S) = x5 Lgxs = x5 B' Bxs = ||Bx||5
. B € R(G)*n s vertex-edge incidence matrix

* Row for edge e =(u, v) has 1 in column u, -1 in column v,
zeroes elsewhere

Running Time for
Approx Minimum Cut

* 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

€1

35 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Running Time for
Approx Minimum Cut

* 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

III
31

-1 0
O 0 O
1 0 -1

1 0 -1

36 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Running Time for
Approx Minimum Cut

* 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

1Bx3 |5 =1Bxg1 343115 = 1

37 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Running Time for
Approx Minimum Cut

 0(n?) time to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction

* 0(n?) cuts and 0(n) time to calculate each cut

* Only need (1 + €) approximation...

* Apply Johnson-Lindenstrauss to vertex-edge
incidence matrix!

Running Time for
Approx Minimum Cut

* 0(n?/€%) to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction
* 0(n?) cuts and O(log n/€?) time to calculate each cut

el —1 0

TX.1 0 -1 0

2y 1 0 0 -1
O 0 1 -1 €4

logn /€>
rows

ﬂ.
N

39 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Running Time for
Approx Minimum Cut

* 0(n?/€%) to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction
* 0(n?) cuts and O(log n/€?) time to calculate each cut

lﬂ-

61 -1 0
T XEo oo
1 0 -1

logn /€>

rows 1 0 -1

40 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Running Time for
Approx Minimum Cut

* 0(n?/€%) to query all candidate cuts in sparsifier
using Karger-Stein recursive contraction
* 0(n?) cuts and O(log n/€?) time to calculate each cut

lﬂ
T xm

0 0
2 0 0

logn /e
rows 0 0

41 ITCS 2025. Matthew Ding (Berkeley) 1/10/25

Running Time for
Exact Minimum Cut

e Runtime Bottlenecks:

1. Update Time: store edge only if it is within a candidate
minimum cut

2. Post-processing Time: query all candidate minimum
cuts with a for-all sparsifier

* Both searches can be improved using a k-sparse
recovery sketch with k = 6(logn)!

* Key idea: applying sketching to Karger-Stein
recursive contraction

Summary of Results

l. Optimal space approximate minimum cut on
weighted graphs in adversarial streams

II. Optimal space exact minimum cut on unweighted
graphs in random-order streams

Ill. General algorithmic framework improving
enumerating cuts using sketches

IV. (Optimal space approximate all-pairs effective
resistances in adversarial streams)

Open Problems

e Exact random-order minimum cut on weighted
graphs

e Approximate minimum cut in fully-dynamic graph
streams (insertions and deletions):
e Upper-bound: dynamic spectral sparsifiers O (E—nz) space

GAP

* Lower Bound: insertion-only minimum cut () (2) space

Thank you!

* Full version: arXiv:2412.01143 [cs.DS]

e Joint work with:

Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson,
Vihan Shah, David P. Woodruff

e Currently applying for Ph.D. programs this cycle,
happy to chat!

	Slide 1: Space Complexity of Minimum Cut Problems in Single-Pass Streams
	Slide 2: Streaming Algorithms
	Slide 3: Graph Streaming
	Slide 4: Graph Semi-Streaming
	Slide 5: Minimum Cut Streaming
	Slide 6: Minimum Cut Streaming
	Slide 7: I. Approximate Minimum Cut in Adversarial Streams
	Slide 8: Cut Sparsification
	Slide 9: Spectral Sparsification
	Slide 10: Minimum Cut Streaming
	Slide 11: Algorithm Metrics
	Slide 12: Algorithm Metrics
	Slide 13: Improving Space Complexity
	Slide 14: Improving Space Complexity
	Slide 15: Algorithm Metrics
	Slide 16: Algorithm Metrics
	Slide 17: Algorithm Metrics
	Slide 18: Improving Update Time
	Slide 19: Improving Update Time
	Slide 20: Improving Update Time
	Slide 21: Algorithm Metrics
	Slide 22: Algorithm Metrics
	Slide 23: Approximate Minimum Cut Summary
	Slide 24: Approximate Minimum Cut Lower Bounds
	Slide 25: II. Exact Minimum Cut in Random-Order Streams
	Slide 26: Random-Order Model
	Slide 27: Random-Order Minimum Cut
	Slide 28: Algorithm Details
	Slide 29: Algorithm Details
	Slide 30: Algorithm Details
	Slide 31: Algorithm Details
	Slide 32: Algorithm Details
	Slide 33: III. Improving Update and Post-Processing Times
	Slide 34: Running Time for Approx Minimum Cut
	Slide 35: Running Time for Approx Minimum Cut
	Slide 36: Running Time for Approx Minimum Cut
	Slide 37: Running Time for Approx Minimum Cut
	Slide 38: Running Time for Approx Minimum Cut
	Slide 39: Running Time for Approx Minimum Cut
	Slide 40: Running Time for Approx Minimum Cut
	Slide 41: Running Time for Approx Minimum Cut
	Slide 42: Running Time for Exact Minimum Cut
	Slide 43: Summary of Results
	Slide 44: Open Problems
	Slide 45: Thank you!

