
CS294-92: Analysis of Boolean Functions Spring 2025

Lecture 24: The Sensitivity Conjecture
Instructor: Avishay Tal Scribe: Matthew Ding

In the previous lecture, we introduced the query, or black-box model, along with various
measures of complexity within this model. For example, we introduced deterministic query
complexity, which is the minimum depth of any decision tree computing f . In this lecture
we introduce the Sensitivity Conjecture proposed by Nisan and Szegedy in 1994, as well as
the recent breakthrough by Huang in 2019 which proves the conjecture.

24.1 Certificate complexity and block sensitivity

An additional query complexity measure is non-deterministic query complexity, also known
as certificate complexity.

Definition 24.1 (Certificate complexity). The certificate complexity of a function f on x
(denoted Cf (x)) is the minimum number of coordinates a prover needs to reveal in x to
convince a deterministic verifier of the value of f(x).

We can also give an equivalent definition through the notion of restrictions:

Definition 24.2 (Restriction). A restriction ρ is a partial assignment ρ : [n] → {−1, ∗, 1}.
A string x ∈ {−1, 1}n is called consistent with ρ if for all i ∈ [n], either ρi = ∗ or ρi = xi.

Thus the certificate complexity can also be written as

Cf (x) = min
ρ

x consistent with ρ
f |ρ is constant

|ρ−1(1)|+ |ρ−1(−1)| (24.1)

Recall from Lecture 4 the definition of sensitivity :

Definition 24.3 (Sensitivity). The sensitivity of a Boolean function f : {−1, 1}n → {−1, 1}
on input x : {−1, 1}n is number of coordinates which are pivotal on x.

Sensf (x) ≜ |{i ∈ [n] : f(x) ̸= f(x⊕i)}| (24.2)

A generalized notion of sensitivity, called block sensitivity, allows for not just single coordi-
nates to be flipped, but sets of coordinates.

Definition 24.4 (Block sensitivity [Nis89]). The block sensitivity of a Boolean function
f : {−1, 1}n → {−1, 1} on input x ∈ {−1, 1}n (denoted BlockSensf (x)) is the maximum
number of disjoint blocks of coordinates B1, . . . , Bm ⊆ [n] which are pivotal on x.
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We can additionally define certificate complexity, sensitivity, and block sensitivity on the
entire function f , which is the maximum value on any input x.

Definition 24.5.

C(f) ≜ max
x∈{−1,1}n

Cf (x)

Sens(f) ≜ max
x∈{−1,1}n

Sensf (x)

BlockSens(f) ≜ max
x∈{−1,1}n

BlockSensf (x)

Claim 24.6. For all functions f : {−1, 1}n → {−1, 1} and inputs x ∈ {−1, 1}n,

Sensf (x) ≤ BlockSensf (x) ≤ Cf (x) ≤ D(f) (24.3)

Proof. The first and third inequality are due to definition. To prove the second inequality,
we fix x, and let B1, . . . , Bm be any disjoint set of blocks such that f(x) ̸= f(x⊕Bi). If a
certificate for function f on x does not reveal at least one coordinate in each block, a verifier
cannot distinguish between f(x) and f(x⊕Bi), which are both consistent with the certificate
but have different values. Therefore the number of bits must be at least the number of
blocks.

The following lemma is given without proof:

Lemma 24.7. For all functions f : {−1, 1}n → {−1, 1},

D(f) ≤ C(f)2 (24.4)

Theorem 24.8. For all functions f : {−1, 1}n → {−1, 1},

C(f) ≤ BlockSens(f) · Sens(f) (24.5)

Proof. Let x be an input maximizing the value of Cf (x). Let m = BlockSensf (x) and let
B1, . . . , Bm be a set of m disjoint blocks such that f(x) ̸= f(x⊕Bi) for all i ∈ [m]. Without
loss of generality we can assume that each of these blocks is minimal, i.e., there exists no
subset of any block Ci ⊆ Bi such that f(x) ̸= f(x⊕Ci) (otherwise we just replace Bi with Ci).
Thus ∀B′ ⊂ Bi, f(x) = f(x⊕B′

), and Sensf (x
⊕Bi) ≥ |Bi|. Therefore we have Sens(f) ≥ |Bi|

for all i ∈ [m].

Let ρ be the restriction which fixes ρ(j) = xj for all j ∈
⋃

i∈[m] Bi. By construction x is
consistent with ρ. We show that f |ρ is constant through the following claim:

Claim 24.9. If y is consistent with ρ, then f(x) = f(y).

Proof. Assume for contradiction f(x) ̸= f(y). We can define a new block Bm+1 = {j ∈ [n] :
xj ̸= yj}. Since y is consistent with ρ, Bm+1 is nonempty and disjoint from B1, . . . , Bm. If
f(x) ̸= f(y), then BlockSensf (x) ≥ m+ 1, which is a contradiction.
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From the restriction definition of certificate complexity in Equation 24.1, we have

C(f) = Cf (x) ≤ |ρ−1(1)|+ |ρ−1(−1)| =
∑
i∈[m]

Bi ≤ m · Sens(f) = BlockSens(f) · Sens(f)

(24.6)

Notation Query complexity measure

D(f) Deterministic query complexity
R(f) Randomized query complexity
Q(f) Quantum query complexity
C(f) Certificate query complexity

BlockSens(f) Block sensitivity
deg(f) Degree
d̃eg(f) Approximate degree

Table 24.1: List of query complexity measures [Nis89, NS94, BBC+98]. All measures are
known to be related by a polynomial (specifically quartic) factor, but before [Hua19] it was
unclear how sensitivity related to these measures.

24.2 The Sensitivity Conjecture

The Sensitivity Conjecture, also known as the Sensitivity vs. Block Sensitivity Conjecture,
states that sensitivity and block sensitivity are related by a polynomial factor.

Conjecture 24.10 (Sensitivity Conjecture [NS94]). For all Boolean functions f : {−1, 1}n →
{−1, 1},

BlockSens(f) ≤ Sens(f)O(1) (24.7)

Equivalently,
deg(f) ≤ Sens(f)O(1) (24.8)

24.2.1 Previous progress

For upper-bounds on sensitivity, [Rub95] showed a function f such that BlockSens(f) ≥
1
2
Sens(f)2. Additionally, it was well-known that there exists a function f such that deg(f) ≥

Sens(f)2, as witnessed by f = OR√
n ◦ AND√

n.

For lower-bounds, a line of work [Sim83, KK04, ABG+14, APV16] showed increasingly
stronger bounds in relation to block sensitivity, up to BlockSens(f) ≤ 2Sens(f)−1(Sens(f)−
1/3). However, the best known results before Huang were an exponential relationship be-
tween sensitivity and block sensitivity.
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24.2.2 Proof of conjecture

Huang proved the Sensitivity Conjecture by showing the following theorem:

Theorem 24.11 ([Hua19]). For all Boolean functions f : {−1, 1}n → {−1, 1},

deg(f) ≤ Sens(f)2 (24.9)

For x, y ∈ {−1, 1}n, let x∼y denote x and y being adjacent vertices in the Boolean hyper-
cube, i.e., the Hamming distance between x and y is exactly 1. Consider the following graph
related to the Boolean function f :

Definition 24.12 (Sensitivity graph). The sensitivity graph of a Boolean function f is
defined as the graph Gf = (V,E), where V = {−1, 1}n, and E = {(x, y) : x∼y, f(x) ̸= f(y)},
i.e. the subset of sensitive edges on the Boolean hypercube.

The sensitivity is thus given as the maximum degree in the sensitivity graph: Sens(f) ≜
maxv∈V deg(v). Additionally, denote Af as the adjacency matrix of graph Gf and λ(f) as
the maximum eigenvalue Af .

Remark 24.13. Note that we slightly overload the notation deg(·). deg(f) refers to the degree
of the function f as a multilinear polynomial, while deg(v) refers the the degree of vertex v
in the sensitivity graph Gf .

We can assume without loss of generality that deg(f) = n. If f has degree d < n, we can
restrict f to the d coordinates of any degree-d monomial in the Fourier representation of
f . This gives a degree-d Boolean function f ′ on d variables whose sensitivity is at most
the sensitivity of the original function. Thus proving deg(f ′) ≤ Sens(f ′)2 implies deg(f) ≤
Sens(f)2.

We prove the following lemma, which was the main contribution in the work of Huang:

Lemma 24.14 ([Hua19]).
∀f : deg(f) ≤ λ(f)2 (24.10)

It is well-known that ∀f : λ(f) ≤ Sens(f), as the maximum eigenvalue of the adjacency
matrix lower bounds the maximum degree in any graph (see, for example, Theorem 5 in
Chapter VIII of [Bol98]). Thus Lemma 24.14 directly implies the Sensitivity conjecture, as
we have

∀f : deg(f) ≤ λ(f)2 ≤ (max
v∈V

deg(v))2 ≤ Sens(f)2 (24.11)

For the remainder of the section, we give an overview of the proof to Lemma 24.14.

Proof Sketch. Note that any m × m real symmetric matrix has real eigenvalues λm ≤
λm−1, . . . ,≤ λ1. Therefore we can write λ(f) = maxv ̸=0⃗

∥Afv∥
2

∥v∥2
.

We prove that there exists some vector v′ ̸= 0⃗ such that ∥Afv∥
2

∥v∥2
≥

√
n.
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Claim 24.15. For all n, there exists an assignment of {−1, 1} on the edges of the n-
dimensional hypercube such that B2 = nI.

Proof Sketch. 1. Base case: Let B1 =

[
0 1
1 0

]
. We can show that B2

1 = I.

2. Inductive step: Let Bn =

[
Bn−1 I
I −Bn−1

]
. We can show that

[
Bn−1 I
I −Bn−1

] [
Bn−1 I
I −Bn−1

]
=

[
B2

n−1 + I 0
0 B2

n−1 + I

]
=

[
nI 0
0 nI

]
(24.12)

Corollary 24.16. Bn has 2n−1 eigenvalues of
√
n and 2n−1 eigenvalues of −

√
n.

Proof Sketch. Since B2
n = nI, which has all eigenvalues n, Bi has eigenvalues ±

√
n. Addi-

tionally since Tr(Bn) = 0 as the diagonal of Bn is all zeroes, we must have equal number of
eigenvalues

√
n and −

√
n.

We partition the set of strings {−1, 1}n into subsets V0 = {x ∈ {−1, 1}n : f(x) =
PARITY(x)} and V1 = {x ∈ {−1, 1}n : f(x) ̸= PARITY(x)}. We can also map these strings
to the set [2n] using their binary representation, which represent indices of vectors in R2n .
Thus we can also consider V0 and V1 as defining subspaces of R2n of dimension |V0| and |V1|
respectively. Since we can assume deg(f) = n without loss of generality,

f̂([n]) =
|V0| − |V1|

2n
̸= 0 (24.13)

so |V0| ̸= |V1|. Without loss of generality we can assume |V0| > |V1|, i.e. |V0| ≥ 2n−1 + 1,
and the vectors supported on the indices in V0 form a ≥ 2n+1 + 1 subspace. Since Bn has
2n−1 eigenvalues of

√
n, the eigenspace of eigenvalue

√
n has dimension 2n−1. Therefore the

intersection of V0 subspace and the
√
n eigenspace has dimension ≥ 1, and there exists a√

n eigenvector in R2n only supported on the indices in V0. Call this vector v, and define
v′ ∈ R2n such that v′x = |vx|. Since v is an eigenvector, v′ ̸= 0⃗.

Claim 24.17. For all indices x ∈ [2n], (Afv
′)x ≥

√
n · v′x

Proof Sketch. For all x ∈ V1, since v′ has no support on the indices in V1, (Afv
′)x =

√
n·v′x =

0.

For all x ∈ V0,
√
n · v′x ≜

√
n · |vx| = |(Bnv)x| =

∣∣∣∣∣∑
y∼x

Bx,yvy

∣∣∣∣∣ (24.14)

Additionally,
(Afv

′)x =
∑
y∼x

f(x)̸=f(y)

v′y =
∑
y∼x
y∈V0

v′y =
∑
y∼x

v′y ≜
∑
y∼x

|vy| (24.15)
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By the triangle inequality, ∣∣∣∣∣∑
y∼x

Bx,yvy

∣∣∣∣∣ ≤ ∑
y∼x

|vy| (24.16)

proving the claim.

Claim 24.17 implies that λ(f) ≥ ∥Afv
′∥

2

∥v′∥2
≥

√
n ≥

√
deg(f), completing the proof of Theo-

rem 24.11.

24.3 Current status and open problems

We summarize the relationship between the query complexity measures in Table 24.1, ignor-
ing constant factors.

Currently, it is known that for all total functions f ,

Q(f) ≤ R(f)

BlockSens(f) ≤ C(f)

}
≤ D(f) ≤ deg(f)3 ≤ λ(f)6 ≤ Sens(f)6 (24.17)

The exact relation between deterministic and quantum query complexity is known up to log
factors. There exists a function f such that D(f) ≤ Q(f)4 [ABDK+20], and a function f

such that D(f) ≥ Õ(Q(f)4) [ABB+15].

The exact relation between randomized query complexity and quantum query complexity
remains an open question. On one side, it was shown that there exist functions f such
that R(f) ≥ Q(f)3 [BS20, SSW23]. On the other side, R(f) ≤ Q(f)4 is only known due
to the deterministic query case [ABDK+20]. In that work they additionally conjecture the
following two relations:

Conjecture 24.18 ([ABDK+20]). There exist functions f : {−1, 1}n → {−1, 1} such that

R(f) ≤ Q(f)3 (24.18)

D(f) ≤ BlockSens(f)2 (24.19)
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