> | CS 270: Combinatorial Algorithms and Data Structures |
| :--- |
| Lecture 12 - February 23, 2023 |
| Prof. Jelani Nelson |
| Scribe: Matthew Ding, Jonathan Tay 2023 |

1 Overview

In the last lecture we introduced hashing with linear probing, and proved that it achieves constant expected query time with a fully-random hash function.

In this lecture we show linear probing with a k-wise independent hash function also achieves constant expected query time for $k=7$ and $k=5$. The proof comes from Pagh, Pagh, and Ružić [1], and utilizes the "symmetrization trick". We also briefly introduce the approximate membership and dictionary problems.

2 Linear Probing with k-wise Independent Hashing

2.1 7-wise Independent Hashing

We first assume that the length of the hash table, $m=2 n$. In the previous lecture we showed that

$$
\begin{equation*}
\mathbb{E}[\# \text { probes to query }(z)] \leq \sum_{i=1}^{\infty} k \cdot \mathbb{P}(\text { a specific length } k \text { interval containing } h(z) \text { is full }) \tag{1}
\end{equation*}
$$

Note that the fullness of an interval is about the actual location that z is stored, as opposed to $h(z)$ which is about the location that the key hashes to.

We define E_{k} to be the indicator random variable

$$
E_{k}= \begin{cases}1 & \text { if } z \text { is contained in a full interval of length } \geq k \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{rlr}
\sum_{k=1}^{\infty} E_{k} & =\sum_{k=1}^{\infty} P\left(E_{k}=1\right) & \\
& =\sum_{k=1}^{\infty} \mathbb{P}\left(V_{k}\right. \text { is an indicator variable) } \\
& \leq \sum_{k=1}^{k} k \cdot \mathbb{P}\left(\text { the } i^{\text {th }} k \text {-interval containing } h(z) \text { is full }\right) & \\
& \leq \sum_{k}^{\infty} k \cdot e^{-\Omega(k)} & \text { (symmetry between intervals) } \\
& =O(1) & \text { (by the Chernoff bound) }
\end{array}
$$

Problem: We need the use of fully random variables to use the Chernoff bound in the last step.

Solution: Use 7 -wise independent hashing, and bound \mathbb{P} (a k-interval containing $h(z)$ is full $)=$ $O\left(\frac{1}{k^{3}}\right)$

Let I denote the specific (arbitrary) interval in Eq. (1). Define the indicator random variable X_{i} to be

$$
X_{i}= \begin{cases}1 & \text { if } h(i \text { th key }) \in I \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

Additionally we define the load on interval I as $L(I)=\sum_{i=1}^{n} X_{i}$. Note that $\mathbb{E}[L(I)]=\frac{k}{2}$.
Definition 2.1 (Full Interval). An interval I is considered full if $|\{x: h(x) \in I\}| \geq|I|$.
We now seek to bound that probability that a length k interval is full.

$$
\begin{align*}
\mathbb{P}\left(\left\lvert\, L(I)-\mathbb{E}[L(I)]>\frac{k}{2}\right.\right) & <\left(\frac{k}{2}\right)^{-6} \cdot \mathbb{E}[L(I)-\mathbb{E}[L(I)]] \tag{byTheorem2.2}\\
& =\left(\frac{k}{2}\right)^{-6} \cdot \mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}-\frac{k}{2}\right)^{6}\right] \tag{4}
\end{align*}
$$

To deal with the final term, it is doable with combinatorics by expanding out the powers, but it is better dealt with a probability trick of "symmetrization".

Probability and Vector Detour The l_{p} norm of a vector is defined as: $\|x\|_{p}:=\left(\sum\left|x_{i}\right|^{p}\right)^{1 / p}$. For random variables, we can also define the l_{p} norm as $\|X\|_{p}:=\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}$.

We will also use the following inequalities without proof:
Theorem 2.2 (Extended Markov Inequality). For a nonnegative random variable X, we have

$$
\begin{equation*}
\mathbb{P}(|X|>a) \leq \frac{E\left[|X|^{n}\right]}{a^{n}} \tag{6}
\end{equation*}
$$

Theorem 2.3 (Minkowski's Inequality). L^{p} spaces are normed vector spaces. Therefore, for $p \geq 1$, we have the triangle inequality

$$
\begin{equation*}
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p} \tag{7}
\end{equation*}
$$

Theorem 2.4 (Jensen's Inequality). If f is a convex function and X is a random variable, then

$$
\begin{equation*}
f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] \tag{8}
\end{equation*}
$$

Lastly, we also note that we are able to define a new random variable Y that is drawn from the same distribution as X but independent from X. This allows us to do the following:

$$
\begin{equation*}
\mathbb{E}[|X-\mu|]=\mathbb{E}[|X-\mathbb{E}[Y]|]=\underset{X}{\mathbb{E}}[|\underset{Y}{\mathbb{E}}[X-Y]|]=\mathbb{E}[|X-Y|] \tag{9}
\end{equation*}
$$

Now, back to simplifying Equation (5). To make things easier, we deal with the expectation term without the exponent first. We also define another random variable X^{\prime} drawn from the same distribution as X but independently selected; and define $\sigma_{i} \in\{-1,1\}$ to be an uniform independent random variable.

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[X_{i}\right]\right\|_{6} & =\left\|\underset{x_{i}}{\mathbb{E}}\left[\sum X_{i}-\sum X_{i}^{\prime}\right]\right\|_{6} & & \text { (from Equation 9) } \\
& \leq\left\|\sum\left(X_{i}-X_{i}^{\prime}\right)\right\|_{6} & & \text { (by Theorem 2.4) } \\
& \leq\left\|\sum\left(\sigma_{i}\left(X_{i}-X_{i}^{\prime}\right)\right)\right\|_{6} & & \text { (by symmetry) } \\
& \leq 2\left\|\sum\left(\sigma_{i} \cdot X_{i}\right)\right\|_{6} & & \text { (by Theorem 2.3) }
\end{aligned}
$$

We complete that last step, by setting $X_{i}-X_{i}^{\prime}$ to be another random variable Z which is valid, because these two variables are independently chosen. Its symmetry can be observed as $\mathbb{P}\left(Z_{i}\right)=\alpha$ is the same as $\mathbb{P}\left(Z_{i}\right)=-\alpha, \forall \alpha \in \mathbb{R}$.

Now if we include back the expectation and the exponent,

$$
\begin{array}{rlrl}
\mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}-\frac{k}{2}\right)^{6}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[X_{i}\right]\right)^{6}\right] & \\
& =\mathbb{E}\left[\sum_{i} \sigma_{i} X_{i}\right]^{6} & & \text { (Eliminate constant term) } \\
& =\sum_{i_{1}, i_{2} \ldots i_{6}}\left(\mathbb{E}\left[X_{i 1} \ldots X_{i 6}\right] \cdot \mathbb{E}\left[\sigma_{i 1} \ldots \sigma_{i 6}\right]\right) & & \text { (Expansion of exponent) }
\end{array}
$$

We note that

$$
\mathbb{E}\left[\sigma_{i}^{j}\right]=\left\{\begin{array}{l}
1, \text { if } j \text { is odd } \\
0, \text { if } j \text { is even }
\end{array}\right.
$$

because it is a random uniform variable with magnitude $1,\{-1,1\}$ squared will always give 1 , while the expectation of a single variable would be 0 . This allows us to remove all terms of the expanded exponentiation with odd powers of σ. The remaining terms would remain only if the contributing 6 terms are in the form $\{(2,2,2),(4,2),(6)\}$. Additionally, we note that we can treat any $X_{i 1} \ldots X_{i 6}$ as independent, given that we have a 7 -wise hash functions, so keys $i_{1}, i_{2}, \cdots i_{6}$, and z are effectively hashed to random independent locations.

To take the first possibility as an example $\{2,2,2\}$, it means that there are 3 distinct locations, and out of 6 terms, 3 sets of 2 terms have hashed to the same location as each other (but distinct from the other sets). The expectation of this happening for 3 specific locations is $\left(\frac{k}{m}\right)^{3}$, and the number of ways to choose these random variables is n^{3}. This gives $O\left(n^{3} \cdot\left(\frac{k}{m}\right)^{3}\right)$. Generalizing this for the set $\{2,4\}$ we get $O\left(n^{2} \cdot\left(\frac{k}{m}\right)^{2}\right)$, and for the set $\{6\}$ we get $O\left(n \cdot \frac{k}{m}\right)$.

$$
\begin{aligned}
\sum_{i_{1}, i_{2} \ldots i_{6}}\left(\mathbb{E}\left[X_{i 1} \ldots X_{i 6}\right] \cdot \mathbb{E}\left[\sigma_{i 1} \ldots \sigma_{i 6}\right]\right) & =O\left(n^{3} \cdot\left(\frac{k}{m}\right)^{3}\right)+O\left(n^{2} \cdot\left(\frac{k}{m}\right)^{2}\right)+O\left(n \cdot \frac{k}{m}\right) \\
& =O\left(n^{3} \cdot\left(\frac{k}{m}\right)^{3}\right) \\
& =O\left(k^{3}\right)
\end{aligned}
$$

$$
(m=2 n)
$$

Using this result, we get that

$$
\begin{aligned}
\left(\frac{k}{2}\right)^{-6} \cdot \mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[X_{i}\right]\right)^{6}\right] & =\left(\frac{k}{2}\right)^{-6} \cdot O\left(k^{3}\right) \\
& =O\left(\frac{1}{k^{3}}\right)
\end{aligned}
$$

Plugging back into Eq. (1), we have

$$
\begin{aligned}
\mathbb{E}[\text { \# probes to query }(z)] & \leq \sum_{i=1}^{\infty} k \cdot \mathbb{P}(\text { a specific length } \mathrm{k} \text { interval containing } \mathrm{h}(\mathrm{x}) \text { is full }) \\
& =\sum_{i=1}^{\infty} k \cdot O\left(\frac{1}{k^{3}}\right) \\
& =O(1)
\end{aligned}
$$

giving us expected constant query time with a 7 -wise independent hash function, as desired.

2.2 5-wise Independent Hashing

We first note that 5 -independent hash functions are optimal, as it was shown by Pǎtraşcu and Thorup [2] that there exist random 3 and 4-independent hash functions with expected logarithmic search time for specific keys.

We now sketch the proof (by picture) that a 5 -wise independent hash function is still sufficient for expected constant query time. Our goal is to construct a constant number of intervals where if I is full, at least one of these intervals is "almost full".

1. Construct a perfectly balanced binary search tree with the leaves corresponding to the entries of our array. Round up k to nearest power of 2 and consider the union of all arbitrary length k intervals that cover $h(z)$ (colored yellow in Fig. 1).
2. Go to the level of the tree that where every node has k leaves (marked in green)
3. Go 2 levels lower, where each node has $k / 4$ leaves (marked in pink). The total number of pink nodes that intersect all possible k length intervals containing $h(z)$ is $O(1)$ pink nodes, as each pink node has $O(k / 4)$ leaves and the yellow interval is at most $O(2 k)$. In particular, at most 5 pink intervals intersect I.

Figure 1: Diagram of 5 -wise independent hash function proof, $m=16, k=8$

To reuse the equation used for the proof of 7 -wise independent hashing

$$
\begin{aligned}
\mathbb{E}[\text { Runtime }] & \leq \sum_{k=1}^{\infty} E_{k} \\
& =\sum_{k=1}^{\infty} P\left(E_{k}=1\right) \quad \quad\left(E_{k} \text { is an indicator variable }\right) \\
& =\sum_{k=1}^{\infty} \mathbb{P}(\exists \text { a full length } k \text {-interval containing } h(z)) \\
& =\sum_{k=1}^{\infty} \mathbb{P}(\exists \text { a pink interval that is almost full }) \\
& \leq \sum_{k=1}^{\infty} O(1) \cdot P(\exists \text { a particular pink interval almost full }) \quad \text { (symmetry between intervals) }
\end{aligned}
$$

Claim 2.5. If I is full, at least one pink interval must be at least $3 / 5$ full.
Proof. The length k interval T is fully contained in the union of ≤ 5 pink nodes; call them $b_{1}, . ., b_{5}$. If T is full, then k elements hash to T, which by pigeonhole means one of b_{1}, \ldots, b_{5} must have at least $k / 5$ elements hashed to it. But that b_{i} is an interval of length $k / 4$, and $\frac{k / 5}{k / 4}=80 \%$, and thus it is at least 80% full, and thus greater than $3 / 5$ full.

This assumes though that k is a power of 2 . In reality we pick the pink nodes by rounding up to the nearest power of 2 , then going down 2 levels which corresponds to dividing by 4 (so if we care about $k=14$, we would have pink nodes covering intervals of length 4). If the pink node interval length is t, then basically we know $1 / 4 \leq t / k<1 / 2$ (close to $1 / 2$ if k is 1 more than a power of 2).

The "worst case" is t / k is close to $1 / 2$, in which case we really have b_{i} 's being intervals of length $k / 2$ and T covered by ≤ 3 pink nodes, so the pigeonhole argument gives $\frac{k / 3}{k / 2}=66.7 \%>3 / 5$.

Now we see that the intervals represented by pink nodes satisfy our desired property. From this, we see that we can actually modify Eq. (1) as

$$
\begin{equation*}
\mathbb{E}[\# \text { probes to query }(z)] \leq \sum_{i=1}^{\infty} \mathbb{P}(\text { there exists a pink interval that is "almost" full) } \tag{10}
\end{equation*}
$$

Using the symmetrization trick with a 5 -wise independent hash function instead of 7 -wise, we can bound this as

$$
\begin{equation*}
\mathbb{P}(\text { there exists a pink interval that is "almost" full }) \leq \sum_{i=1}^{\infty} O(1) \cdot O\left(\frac{1}{k^{2}}\right)=O(1) \tag{11}
\end{equation*}
$$

giving us expected constant query time with a 5 -wise independent hash function, as desired.

3 Approximate Membership and Dictionary

Solutions to the dictionary problem typically take $O(n W)$ bits, where W is the word size. For data structures with smaller space complexity, we settle for approximate solutions.

3.1 Approximate Membership Problem

The following is the approximate membership problem: Store a database of keys subject to

1. insert(x): adds x to the database
2. query (x) : returns whether x is in the database. If x is actually present, it returns $Y E S$ with probability 1 . If x is not actually present, it returns $N O$ with probability $\geq 1-\epsilon$.

We wish to solve this problem with $O\left(n \log \frac{1}{\epsilon}\right)$. In the next lecture, we will see how to do this with Bloom filters.

3.2 Approximate Dictionary Problem

Approximate dictionary has a very similar setup as approximate membership. Assuming that a key is not in the database, querying it outputs an arbitrary value with a probability $\leq \epsilon$. If the key actually is in the database, it will return the correct value with probability 1 . In the next lecture, we will see how to implement this data structure using bloomier filters and cuckoo hashing.

References

[1] Anna Pagh, Rasmus Pagh, Milan Ružić. Linear Probing with 5-wise Independence. SIAM Review, 53(3):547-558, 2011.
[2] Mihai Pǎtraşcu, Mikkel Thorup. On the k-Independence Required by Linear Probing and Minwise Independence. ACM Transactions on Algorithms (TALG) 12(1): 1-27, 2015.

